Immune Modulation by Vitamin D: Special Emphasis on Its Role in Prevention and Treatment of Cancer



      Vitamin D has been known to be involved in mineral and bone homeostasis for many years. In the past its main use was in treating osteoporosis and rickets. In recent years it was found that vitamin D is an immune-modulating agent and may also have a role in several diseases, including autoimmune diseases. The immune-modulating effects appear to be mediated by vitamin D interaction with the vitamin D receptor (VDR) that has transcriptional effects and is expressed on various cell types, especially those of the immune system. Immunologic and rheumatologic diseases were the first to be studied, but at the moment the spotlight is on the interactions between tumor cells and vitamin D. This review focuses on four forms of cancer that apparently benefit from a vitamin D supplementation during treatment: prostate, breast, and colorectal cancers and melanoma. Several studies reported that differences exist between white and black patients, which we discuss in the review.


      We systematically searched PubMed for studies published in English. The search terms included vitamin D, cancer, breast, colorectal, prostate, and melanoma.

      Findings and implications

      Our findings show that vitamin D has the potential to become a valid coadjuvant in the treatment of cancer.

      Chemical compounds studied in this article

      Key words

      To read this article in full you will need to make a payment
      Subscribe to Clinical Therapeutics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Moore D.D.
        • Kato S.
        • Xie W.
        • et al.
        International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor.
        Pharmacol Rev. 2006; 58: 742-759
        • Villani E.R.
        • Onder G.
        • Carfi A.
        • et al.
        Thyroid function and its implications in oxidative stress influencing the pathogenesis of osteoporosis in adults with Down syndrome: a cohort study.
        Horm Metab Res. 2016; 48: 565-570
        • Malik A.
        • Saleem S.
        • Basit Ashraf M.A.
        • Qazi M.H.
        1, 25-dihydroxyvitamin D3, a potential role player in the development of thyroid disorders in schizophrenics.
        Pak J Med Sci. 2016; 32: 1370-1374
        • Baeke F.
        • Takiishi T.
        • Korf H.
        • et al.
        Vitamin D: modulator of the immune system.
        Curr Opin Pharmacol. 2010; 10: 482-496
        • Hercogova~ J.
        • Fioranelli M.
        • Gianfaldoni S.
        • Chokoeva A.A.
        • Tchernev G.
        • Wollina U.
        • Tirant M.
        • Novotny F.
        • Roccia M.G.
        • Maximov G.K.
        • França K.
        • Lotti T.
        Dr Michaels® product family (also branded as Soratinex®) versus Methylprednisolone aceponate - a comparative study of the effectiveness for the treatment of plaque psoriasis.
        J Biol Regul Homeost Agents. 2016; 30: 77-81
        • Provvedini D.M.
        • Tsoukas C.D.
        • Deftos L.J.
        • Manolagas S.C.
        1,25-dihydroxyvitamin D3 receptors in human leukocytes.
        Science. 1983; 221: 1181-1183
        • Bikle D.
        Nonclassic actions of vitamin D.
        J Clin Endocrinol Metab. 2009; 94: 26-34
        • Altieri B.
        • Muscogiuri G.
        • Barrea L.
        • et al.
        Does vitamin D play a role in autoimmune endocrine disorders? A proof of concept.
        Rev Endocr Metab Disord. 2017; ( [Epub ahead of print])
        • Eloi M.
        • Horvath D.V.
        • Ortega J.C.
        • et al.
        25-Hydroxivitamin D serum concentration, not free and bioavailable vitamin D, is associated with disease activity in systemic lupus erythematosus patients.
        PLoS ONE. 2017; 12: e0170323
        • Felaco P.
        • Castellani M.L.
        • De Lutiis M.A.
        • et al.
        IL-32: a newly-discovered proinflammatory cytokine.
        J Biol Regul Homeost Agents. 2009; 23: 141-147
        • Cantorna M.T.
        • Snyder L.
        • Lin Y.D.
        • Yang L.
        Vitamin D and 1,25(OH)2D regulation of T cells.
        Nutrients. 2015; 7: 3011-3021
        • Pandolfi F.
        • Altamura S.
        • Frosali S.
        • Conti P.
        Key role of DAMP in inflammation, cancer, and tissue repair.
        Clin Ther. 2016; 38: 1017-1028
        • Munger K.L.
        • Levin L.I.
        • Hollis B.W.
        • et al.
        Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis.
        JAMA. 2006; 296: 2832-2838
        • Kamen D.
        • Aranow C.
        Vitamin D in systemic lupus erythematosus.
        Curr Opin Rheumatol. 2008; 20: 532-537
        • Merlino L.A.
        • Curtis J.
        • Mikuls T.R.
        • et al.
        Vitamin D intake is inversely associated with rheumatoid arthritis: results from the Iowa Women׳s Health Study.
        Arthritis Rheum. 2004; 50: 72-77
        • Littorin B.
        • Blom P.
        • Scholin A.
        • et al.
        Lower levels of plasma 25-hydroxyvitamin D among young adults at diagnosis of autoimmune type 1 diabetes compared with control subjects: results from the nationwide Diabetes Incidence Study in Sweden (DISS).
        Diabetologia. 2006; 49: 2847-2852
        • Pludowski P.
        • Holick M.F.
        • Pilz S.
        • et al.
        Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality-a review of recent evidence.
        Autoimmun Rev. 2013; 12: 976-989
        • Trummer C.
        • Pandis M.
        • Verheyen N.
        • et al.
        Beneficial effects of UV-radiation: vitamin D and beyond.
        Int J Environ Res Public Health. 2016; 13: E1028
        • Garland C.F.
        • Garland F.C.
        Do sunlight and vitamin D reduce the likelihood of colon cancer?.
        Int J Epidemiol. 2006; 35: 217-220
        • Colston K.
        • Colston M.J.
        • Feldman D.
        1,25-dihydroxyvitamin D3 and malignant melanoma: the presence of receptors and inhibition of cell growth in culture.
        Endocrinology. 1981; 108: 1083-1086
        • Feldman D.
        • Krishnan A.V.
        • Swami S.
        • et al.
        The role of vitamin D in reducing cancer risk and progression.
        Nat Rev Cancer. 2014; 14: 342-357
        • Moukayed M.
        • Grant W.B.
        Molecular link between vitamin D and cancer prevention.
        Nutrients. 2013; 5: 3993-4021
        • Orlov I.
        • Rochel N.
        • Moras D.
        • Klaholz B.P.
        Structure of the full human RXR/VDR nuclear receptor heterodimer complex with its DR3 target DNA.
        EMBO J. 2012; 31: 291-300
        • Jingwi E.Y.
        • Abbas M.
        • Ricks-Santi L.
        • et al.
        Vitamin D receptor genetic polymorphisms are associated with PSA level, Gleason score and prostate cancer risk in African-American men.
        Anticancer Res. 2015; 35: 1549-1558
        • Marcinkowska E.
        • Wallace G.R.
        • Brown G.
        The use of 1α,25-dihydroxyvitamin D(3) as an anticancer agent.
        Int J Mol Sci. 2016; 17: E729
        • Ingraham B.A.
        • Bragdon B.
        • Nohe A.
        Molecular basis of the potential of vitamin D to prevent cancer.
        Curr Med Res Opin. 2008; 24: 139-149
        • Palmer H.G.
        • Gonzalez-Sancho J.M.
        • Espada J.
        • et al.
        Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling.
        J Cell Biol. 2001; 154: 369-387
        • Shah S.
        • Islam M.N.
        • Dakshanamurthy S.
        • et al.
        The molecular basis of vitamin D receptor and beta-catenin crossregulation.
        Mol Cell. 2006; 21: 799-809
        • Gupta R.
        • Dixon K.M.
        • Deo S.S.
        • et al.
        Photoprotection by 1,25 dihydroxyvitamin D3 is associated with an increase in p53 and a decrease in nitric oxide products.
        J Invest Dermatol. 2007; 127: 707-715
        • Shui I.
        • Giovannucci E.
        Vitamin D status and cancer incidence and mortality.
        Adv Exp Med Biol. 2014; 810: 33-51
        • Jensen S.S.
        • Madsen M.W.
        • Lukas J.
        • et al.
        Inhibitory effects of 1alpha,25-dihydroxyvitamin D(3) on the G(1)-S phase-controlling machinery.
        Mol Endocrinol. 2001; 15: 1370-1380
        • Rohan J.N.
        • Weigel N.L.
        1Alpha,25-dihydroxyvitamin D3 reduces c-Myc expression, inhibiting proliferation and causing G1 accumulation in C4-2 prostate cancer cells.
        Endocrinology. 2009; 150: 2046-2054
        • Salehi-Tabar R.
        • Nguyen-Yamamoto L.
        • Tavera-Mendoza L.E.
        • et al.
        Vitamin D receptor as a master regulator of the c-MYC/MXD1 network.
        Proc Natl Acad Sci U S A. 2012; 109: 18827-18832
        • Boyle B.J.
        • Zhao X.Y.
        • Cohen P.
        • Feldman D.
        Insulin-like growth factor binding protein-3 mediates 1 alpha,25-dihydroxyvitamin d(3) growth inhibition in the LNCaP prostate cancer cell line through p21/WAF1.
        J Urol. 2001; 165: 1319-1324
        • Blutt S.E.
        • McDonnell T.J.
        • Polek T.C.
        • Weigel N.L.
        Calcitriol-induced apoptosis in LNCaP cells is blocked by overexpression of Bcl-2.
        Endocrinology. 2000; 141: 10-17
        • Campbell M.J.
        • Elstner E.
        • Holden S.
        • et al.
        Inhibition of proliferation of prostate cancer cells by a 19-nor-hexafluoride vitamin D3 analogue involves the induction of p21waf1, p27kip1 and E-cadherin.
        J Mol Endocrinol. 1997; 19: 15-27
        • Bao B.Y.
        • Yao J.
        • Lee Y.F.
        1alpha, 25-dihydroxyvitamin D3 suppresses interleukin-8-mediated prostate cancer cell angiogenesis.
        Carcinogenesis. 2006; 27: 1883-1893
        • Abe E.
        • Miyaura C.
        • Sakagami H.
        • et al.
        Differentiation of mouse myeloid leukemia cells induced by 1 alpha,25-dihydroxyvitamin D3.
        Proc Natl Acad Sci U S A. 1981; 78: 4990-4994
        • Deschasaux M.
        • Souberbielle J.C.
        • Latino-Martel P.
        • et al.
        A prospective study of plasma 25-hydroxyvitamin D concentration and prostate cancer risk.
        Br J Nutr. 2016; 115: 305-314
        • Shirazi L.
        • Almquist M.
        • Borgquist S.
        • et al.
        Serum vitamin D (25OHD3) levels and the risk of different subtypes of breast cancer: a nested case-control study.
        Breast. 2016; 28: 184-190
        • Shekarriz-Foumani R.
        • Khodaie F.
        The correlation of plasma 25-hydroxyvitamin D deficiency with risk of breast neoplasms: a systematic review.
        Iran J Cancer Prev. 2016; 9: e4469
        • Janbabai G.
        • Shekarriz R.
        • Hassanzadeh H.
        • et al.
        A survey on the relationship between serum 25-hydroxy vitamin D level and tumor characteristics in patients with breast cancer.
        Int J Hematol Oncol Stem Cell Res. 2016; 10: 30-36
        • Molnar I.A.
        • Molnar B.A.
        • Vizkeleti L.
        • et al.
        Breast carcinoma subtypes show different patterns of metastatic behavior.
        Virchows Arch. 2017; 470: 275-283
        • Tsoutsou P.G.
        • Vozenin M.C.
        • Durham A.D.
        • Bourhis J.
        How could breast cancer molecular features contribute to locoregional treatment decision making?.
        Crit Rev Oncol Hematol. 2017; 110: 43-48
        • García-Quiroz J.
        • García-Becerra R.
        • Santos-Martínez N.
        • et al.
        Calcitriol stimulates gene expression of cathelicidin antimicrobial peptide in breast cancer cells with different phenotype.
        J Biomed Sci. 2016; 23: 78
        • Khatun A.
        • Fujimoto M.
        • Kito H.
        • et al.
        Down-regulation of Ca2+-activated K(+) channel KCa1.1 in human breast cancer MDA-MB-453 cells treated with vitamin D receptor agonists.
        Int J Mol Sci. 2016; 17: E2083
        • Chiang K.-C.
        • Yeh T.-S.
        • Chen S.-C.
        • et al.
        The vitamin D analog, MART-10, attenuates triple negative breast cancer cells metastatic potential.
        Int J Mol Sci. 2016; 17: E606
        • Williams J.D.
        • Aggarwal A.
        • Swami S.
        • et al.
        Tumor autonomous effects of vitamin D deficiency promote breast cancer metastasis.
        Endocrinology. 2016; 157: 1341-1347
        • Wilmanski T.
        • Buhman K.
        • Donkin S.S.
        • et al.
        1alpha,25-dihydroxyvitamin D inhibits de novo fatty acid synthesis and lipid accumulation in metastatic breast cancer cells through down-regulation of pyruvate carboxylase.
        J Nutr Biochem. 2017; 40: 194-200
        • Alimirah F.
        • Peng X.
        • Gupta A.
        • et al.
        Crosstalk between the vitamin D receptor (VDR) and miR-214 in regulating SuFu, a hedgehog pathway inhibitor in breast cancer cells.
        Exp Cell Res. 2016; 349: 15-22
        • Gupta S.
        • Takebe N.
        • LoRusso P.
        Targeting the Hedgehog pathway in cancer.
        Ther Adv Med Oncol. 2010; 2: 237-250
        • Lu D.
        • Jing L.
        • Zhang S.
        Vitamin D receptor polymorphism and breast cancer risk: a meta-analysis.
        Medicine (Baltimore). 2016; 95: e3535
        • Amadori D.
        • Serra P.
        • Masalu N.
        • et al.
        Vitamin D receptor polymorphisms or serum levels as key drivers of breast cancer development? The question of the vitamin D pathway.
        Oncotarget. 2017; ([Epub ahead of print.])
        • Dy G.W.
        • Gore J.L.
        • Forouzanfar M.H.
        • et al.
        Global burden of urologic cancers, 1990-2013.
        Eur Urol. 2017; 71: 437-446
        • Torre L.A.
        • Siegel R.L.
        • Ward E.M.
        • Jemal A.
        Global cancer incidence and mortality rates and trends--an update.
        Cancer Epidemiol Biomarkers Prev. 2016; 25: 16-27
        • Robsahm T.E.
        • Tretli S.
        • Dahlback A.
        • Moan J.
        Vitamin D3 from sunlight may improve the prognosis of breast-, colon- and prostate cancer (Norway).
        Cancer Causes Control. 2004; 15: 149-158
        • Jackson M.D.
        • Tulloch-Reid M.K.
        • Lindsay C.M.
        • et al.
        Both serum 25-hydroxyvitamin D and calcium levels may increase the risk of incident prostate cancer in Caribbean men of African ancestry.
        Cancer Med. 2015; 4: 925-935
        • Schenk J.M.
        • Till C.A.
        • Tangen C.M.
        • et al.
        Serum 25-hydroxyvitamin D concentrations and risk of prostate cancer: results from the Prostate Cancer Prevention Trial.
        Cancer Epidemiol Biomarkers Prev. 2014; 23: 1484-1493
        • Ahearn T.U.
        • Tchrakian N.
        • Wilson K.M.
        • et al.
        Calcium-sensing receptor tumor expression and lethal prostate cancer progression.
        J Clin Endocrinol Metab. 2016; 101: 2520-2527
        • Gilbert R.
        • Bonilla C.
        • Metcalfe C.
        • et al.
        Associations of vitamin D pathway genes with circulating 25-hydroxyvitamin-D, 1,25-dihydroxyvitamin-D, and prostate cancer: a nested case-control study.
        Cancer Causes Control. 2015; 26: 205-218
        • Nunes S.B.
        • de Matos Oliveira F.
        • Neves A.F.
        • et al.
        Association of vitamin D receptor variants with clinical parameters in prostate cancer.
        Springerplus. 2016; 5: 364
        • Kang S.
        • Zhao Y.
        • Liu J.
        • et al.
        Association of Vitamin D receptor Fok I polymorphism with the risk of prostate cancer: a meta-analysis.
        Oncotarget. 2016; 7: 77878-77889
        • Dambal S.
        • Giangreco A.A.
        • Acosta A.M.
        • et al.
        microRNAs and DICER1 are regulated by 1,25-dihydroxyvitamin D in prostate stroma.
        J Steroid Biochem Mol Biol. 2017; 167: 192-202
        • Wang Y.
        • Chen J.
        • Yang W.
        • et al.
        The oncogenic roles of DICER1 RNase IIIb domain mutations in ovarian Sertoli-Leydig cell tumors.
        Neoplasia. 2015; 17: 650-660
        • Yousaf N.
        • Afzal S.
        • Hayat T.
        • et al.
        Association of vitamin D receptor gene polymorphisms with prostate cancer risk in the Pakistani population.
        Asian Pac J Cancer Prev. 2014; 15: 10009-10013
        • Atoum M.F.
        • AlKateeb D.
        • AlHaj Mahmoud S.A.
        The Fok1 vitamin D receptor gene polymorphism and 25(OH) D serum levels and prostate cancer among Jordanian men.
        Asian Pac J Cancer Prev. 2015; 16: 2227-2230
        • Sawada N.
        • Inoue M.
        • Iwasaki M.
        • et al.
        Plasma 25-hydroxy vitamin D and subsequent prostate cancer risk in a nested Case-Control study in Japan: The JPHC study.
        Eur J Clin Nutr. 2017; 71: 132-136
        • Nelson S.M.
        • Batai K.
        • Ahaghotu C.
        • et al.
        Association between serum 25-hydroxy-vitamin D and aggressive prostate cancer in African American men.
        Nutrients. 2016; 9: E12
        • Batai K.
        • Murphy A.B.
        • Nonn L.
        • Kittles R.A.
        Vitamin D and immune response: implications for prostate cancer in African Americans.
        Front Immunol. 2016; 7: 53
        • Paller C.J.
        • Kanaan Y.M.
        • Beyene D.A.
        • et al.
        Risk of prostate cancer in African-American men: evidence of mixed effects of dietary quercetin by serum vitamin D status.
        Prostate. 2015; 75: 1376-1383
        • Marmol I.
        • Sanchez-de-Diego C.
        • Pradilla Dieste A.
        • et al.
        Colorectal carcinoma: a general overview and future perspectives in colorectal cancer.
        Int J Mol Sci. 2017; 18: E197
        • Garland C.F.
        • Garland F.C.
        • Gorham E.D.
        • et al.
        The role of vitamin D in cancer prevention.
        Am J Public Health. 2006; 96: 252-261
        • Ma Y.
        • Zhang P.
        • Wang F.
        • et al.
        Association between vitamin D and risk of colorectal cancer: a systematic review of prospective studies.
        J Clin Oncol. 2011; 29: 3775-3782
        • Gandini S.
        • Boniol M.
        • Haukka J.
        • et al.
        Meta-analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and prostate cancer and colorectal adenoma.
        Int J Cancer. 2011; 128: 1414-1424
        • Lieberman D.A.
        • Prindiville S.
        • Weiss D.G.
        • Willett W.
        Risk factors for advanced colonic neoplasia and hyperplastic polyps in asymptomatic individuals.
        JAMA. 2003; 290: 2959-2967
        • Bostick R.M.
        • Potter J.D.
        • Sellers T.A.
        • et al.
        Relation of calcium, vitamin D, and dairy food intake to incidence of colon cancer among older women. The Iowa Women׳s Health Study.
        Am J Epidemiol. 1993; 137: 1302-1317
        • Zheng W.
        • Anderson K.E.
        • Kushi L.H.
        • et al.
        A prospective cohort study of intake of calcium, vitamin D, and other micronutrients in relation to incidence of rectal cancer among postmenopausal women.
        Cancer Epidemiol Biomarkers Prev. 1998; 7: 221-225
        • Pereira F.
        • Larriba M.J.
        • Munoz A.
        Vitamin D and colon cancer.
        Endocr Relat Cancer. 2012; 19: R51-R71
        • Matusiak D.
        • Murillo G.
        • Carroll R.E.
        • et al.
        Expression of vitamin D receptor and 25-hydroxyvitamin D3-1{alpha}-hydroxylase in normal and malignant human colon.
        Cancer Epidemiol Biomarkers Prev. 2005; 14: 2370-2376
        • Anderson M.G.
        • Nakane M.
        • Ruan X.
        • et al.
        Expression of VDR and CYP24A1 mRNA in human tumors.
        Cancer Chemother Pharmacol. 2006; 57: 234-240
        • Klampfer L.
        Vitamin D and colon cancer.
        World J Gastrointest Oncol. 2014; 6: 430-437
        • Larriba M.J.
        • Munoz A.
        SNAIL vs vitamin D receptor expression in colon cancer: therapeutics implications.
        Br J Cancer. 2005; 92: 985-989
        • Lamprecht S.A.
        • Lipkin M.
        Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms.
        Nat Rev Cancer. 2003; 3: 601-614
        • Kang W.
        • Lee S.
        • Jeon E.
        • et al.
        Emerging role of vitamin D in colorectal cancer.
        World J Gastrointest Oncol. 2011; 3: 123-127
        • Pandolfi F.
        • Cianci R.
        • Lolli S.
        • et al.
        Strategies to overcome obstacles to successful immunotherapy of melanoma.
        Int J Immunopathol Pharmacol. 2008; 21: 493-500
        • Gandini S.
        • Sera F.
        • Cattaruzza M.S.
        • et al.
        Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure.
        Eur J Cancer. 2005; 41: 45-60
        • Hoel D.G.
        • Berwick M.
        • de Gruijl F.R.
        • Holick M.F.
        The risks and benefits of sun exposure 2016.
        Dermatoendocrinol. 2016; 8: e1248325
        • Shipman A.R.
        • Clark A.B.
        • Levell N.J.
        Sunnier European countries have lower melanoma mortality.
        Clin Exp Dermatol. 2011; 36: 544-547
        • van der Rhee H.J.
        • de Vries E.
        • Coebergh J.W.
        Regular sun exposure benefits health.
        Med Hypotheses. 2016; 97: 34-37
        • Berwick M.
        • Pestak C.
        • Thomas N.
        Solar ultraviolet exposure and mortality from skin tumors.
        Adv Exp Med Biol. 2014; 810: 342-358
        • Gorham E.D.
        • Mohr S.B.
        • Garland C.F.
        • et al.
        Do sunscreens increase risk of melanoma in populations residing at higher latitudes?.
        Ann Epidemiol. 2007; 17: 956-963
        • Wyatt C.
        • Lucas R.M.
        • Hurst C.
        • Kimlin M.G.
        Vitamin D deficiency at melanoma diagnosis is associated with higher Breslow thickness.
        PLoS ONE. 2015; 10: e0126394
        • Saiag P.
        • Aegerter P.
        • Vitoux D.
        • et al.
        Prognostic value of 25-hydroxyvitamin D3 levels at diagnosis and during follow-up in melanoma patients.
        J Natl Cancer Inst. 2015; 107 (djv264)
        • Newton-Bishop J.A.
        • Beswick S.
        • Randerson-Moor J.
        • et al.
        Serum 25-hydroxyvitamin D3 levels are associated with breslow thickness at presentation and survival from melanoma.
        J Clin Oncol. 2009; 27: 5439-5444
        • Slominski A.T.
        • Brozyna A.A.
        • Zmijewski M.A.
        • et al.
        Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management.
        Lab Invest. 2017; ([Epub ahead of print]. Review)
        • Wasiewicz T.
        • Szyszka P.
        • Cichorek M.
        • et al.
        Antitumor effects of vitamin D analogs on hamster and mouse melanoma cell lines in relation to melanin pigmentation.
        Int J Mol Sci. 2015; 16: 6645-6667
        • Skobowiat C.
        • Oak A.S.
        • Kim T.K.
        • et al.
        Noncalcemic 20-hydroxyvitamin D3 inhibits human melanoma growth in in vitro and in vivo models.
        Oncotarget. 2017; 8: 9823-9834
        • Berwick M.
        • Erdei E.O.
        Vitamin D and melanoma incidence and mortality.
        Pigment Cell Melanoma Res. 2013; 26: 9-15
        • Marshall J.E.
        • Byrne S.N.
        Does sunlight protect us from cancer?.
        Photochem Photobiol Sci. 2017; 16: 416-425
        • van der Rhee H.
        • Coebergh J.W.
        • de Vries E.
        Is prevention of cancer by sun exposure more than just the effect of vitamin D? A systematic review of epidemiological studies.
        Eur J Cancer. 2013; 49: 1422-1436
        • Lappe J.M.
        • Travers-Gustafson D.
        • Davies K.M.
        • et al.
        Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial.
        Am J Clin Nutr. 2007; 85: 1586-1591
        • Anastasi E.
        • Capoccia D.
        • Granato T.
        • Viggiani V.
        • Tartaglione S.
        • Manganaro L.
        • Angeloni A.
        • Leonetti F.
        Assessing the association between 25-OH vitamin D levels and ROMA score in a population of obese women.
        J Biol Regul Homeost Agents. 2016; 30: 1165-1171
        • Menghini L.
        • Ferrante C.
        • Leporini L.
        • Recinella L.
        • Chiavaroli A.
        • Leone S.
        • Pintore G.
        • Vacca M.
        • Orlando G.
        • Brunetti L.
        A natural formula containing lactoferrin, Equisetum arvensis, soy isoflavones and vitamin D3 modulates bone remodeling and inflammatory markers in young and aged rats.
        J Biol Regul Homeost Agents. 2016; 30: 985-996
        • Pradhan A.D.
        • Manson J.E.
        Update on the vitamin D and omega-3 trial (VITAL).
        J Steroid Biochem Mol Biol. 2016; 155: 252-256