Advertisement
Research Article| Volume 39, ISSUE 2, P322-336, February 2017

Target Intestinal Microbiota to Alleviate Disease Progression in Amyotrophic Lateral Sclerosis

      Abstract

      Purpose

      Emerging evidence has demonstrated that gut microbiome plays essential roles in the pathogenesis of human diseases in distal organs. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Treatment with the only drug approved by the US Food and Drug Administration for use in ALS, riluzole, extends a patient׳s life span by only a few months. Thus, there is an urgent need to develop novel interventions that for alleviate disease progression and improve quality of life in patients with ALS. Here we present evidence that intestinal dysfunction and dysbiosis may actively contribute to ALS pathophysiology.

      Methods

      We used G93A transgenic mice as a model of human ALS. The G93A mice show abnormal intestinal microbiome and damaged tight junctions before ALS disease onset. The mice were given 2% butyrate, a natural bacterial product, in the drinking water.

      Results

      In mice fed with butyrate, intestinal microbial homeostasis was restored, gut integrity was improved, and life span was prolonged compared with those in control mice. At the cellular level, abnormal Paneth cells—specialized intestinal epithelial cells that regulate the host–bacterial interactions—were significantly decreased in the ALS mice treated with butyrate. In both ALS mice and intestinal epithelial cells cultured from humans, butyrate treatment was associated with decreased aggregation of the G93A superoxide dismutase 1 mutated protein.

      Implications

      The findings from this study highlight the complex role of the gut microbiome and intestinal epithelium in the progression of ALS and present butyrate as a potential therapeutic reagent for restoring ALS-related dysbiosis.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Therapeutics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alonso A.
        • Logroscino G.
        • Jick S.S.
        • Hernan M.A.
        Incidence and lifetime risk of motor neuron disease in the United Kingdom: a population-based study.
        Eur J Neurol. 2009; 16: 745-751
        • Joyce P.I.
        • Fratta P.
        • Fisher E.M.
        • Acevedo-Arozena A.
        SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments.
        Mamm Genome. 2011; 22: 420-448
        • Forsyth C.B.
        • Shannon K.M.
        • Kordower J.H.
        • et al.
        Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson׳s disease.
        PloS One. 2011; 6: e28032
        • Hsiao E.Y.
        • McBride S.W.
        • Hsien S.
        • et al.
        Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders.
        Cell. 2013; 155: 1451-1463
        • Gurney M.E.
        • Pu H.
        • Chiu A.Y.
        • et al.
        Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation.
        Science. 1994; 264: 1772-1775
        • Wu S.
        • Yi J.
        • Zhang Y.G.
        • et al.
        Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model.
        Physiol Rep. 2015; 3: e12356
        • Deng H.X.
        • Shi Y.
        • Furukawa Y.
        • et al.
        Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria.
        Proc Nat Acad Sci U S A. 2006; 103: 7142-7147
        • Ivanova M.I.
        • Sievers S.A.
        • Guenther E.L.
        • et al.
        Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS.
        Proc Nat Acad Sci U S A. 2014; 111: 197-201
        • Kim J.
        • Lee H.
        • Lee J.H.
        • et al.
        Dimerization, oligomerization, and aggregation of human Amyotrophic lateral sclerosis Cu/Zn-superoxide dismutase 1 mutant forms in live cells.
        J Biol Chem. 2014;
        • Wu S.
        • Zhang Y.G.
        • Lu R.
        • et al.
        Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis.
        Gut. 2014;
        • Zhang Y.G.
        • Wu S.
        • Xia Y.
        • Sun J.
        Salmonella infection upregulates the leaky protein claudin-2 in intestinal epithelial cells.
        PLoS One. 2013; 8: e58606
        • Liao A.P.
        • Petrof E.O.
        • Kuppireddi S.
        • et al.
        Salmonella type III effector AvrA stabilizes cell tight junctions to inhibit inflammation in intestinal epithelial cells.
        PLoS One. 2008; 3: e2369
        • Cadwell K.
        • Liu J.Y.
        • Brown S.L.
        • et al.
        A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells.
        Nature. 2008; 456: 259-263
        • Louis P.
        • Flint H.J.
        Development of a semiquantitative degenerate real-time pcr-based assay for estimation of numbers of butyryl-coenzyme A (CoA) CoA transferase genes in complex bacterial samples.
        Appl Environ Microbiol. 2007; 73: 2009-2012
        • Edgar R.C.
        Search and clustering orders of magnitude faster than BLAST.
        Bioinformatics. 2010; 26: 2460-2461
        • Edgar R.C.
        • Haas B.J.
        • Clemente J.C.
        • et al.
        UCHIME improves sensitivity and speed of chimera detection.
        Bioinformatics. 2011; 27: 2194-2200
        • McHardy I.H.
        • Li X.
        • Tong M.
        • et al.
        HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota.
        Microbiome. 2013; 1: 26
        • Caporaso J.G.
        • Kuczynski J.
        • Stombaugh J.
        • et al.
        QIIME allows analysis of high-throughput community sequencing data.
        Nat Methods. 2010; 7: 335-336
        • Louis P.
        • Flint H.J.
        Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine.
        FEMS Microbiol Lett. 2009; 294: 1-8
        • Duncan S.H.
        • Barcenilla A.
        • Stewart C.S.
        • et al.
        Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine.
        Appl Environ Microbiol. 2002; 68: 5186-5190
        • Ley R.E.
        • Peterson D.A.
        • Gordon J.I.
        Ecological and evolutionary forces shaping microbial diversity in the human intestine.
        Cell. 2006; 124: 837-848
        • Ley R.E.
        • Turnbaugh P.J.
        • Klein S.
        • Gordon J.I.
        Microbial ecology: human gut microbes associated with obesity.
        Nature. 2006; 444: 1022-1023
      1. Henig R.M. Fat factors. New York Times Magazine 2008-09-28.

        • Ley R.E.
        • Backhed F.
        • Turnbaugh P.
        • et al.
        Obesity alters gut microbial ecology.
        Proc Nat Acad Sci U S A. 2005; 102: 11070-11075
        • Vital M.
        • Howe A.C.
        • Tiedje J.M.
        Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data.
        mBio. 2014; 5: e00889
        • Barcenilla A.
        • Pryde S.E.
        • Martin J.C.
        • et al.
        Phylogenetic relationships of butyrate-producing bacteria from the human gut.
        Appl Environ Microbiol. 2000; 66: 1654-1661
        • Lee H.R.
        • Jun H.K.
        • Choi B.K.
        Tannerella forsythia BspA increases the risk factors for atherosclerosis in ApoE(-/-) mice.
        Oral Dis. 2014; 20: 803-808
        • Davie J.R.
        Inhibition of histone deacetylase activity by butyrate.
        J Nutr. 2003; 133: 2485S-2493S
        • Donohoe D.R.
        • Garge N.
        • Zhang X.
        • et al.
        The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon.
        Cell Metab. 2011; 13: 517-526
        • Hamer H.M.
        • Jonkers D.M.
        • Bast A.
        • et al.
        Butyrate modulates oxidative stress in the colonic mucosa of healthy humans.
        Clin Nutr. 2009; 28: 88-93
        • Hamer H.M.
        • Jonkers D.
        • Venema K.
        • et al.
        Review article: the role of butyrate on colonic function.
        Aliment Pharmacol Ther. 2008; 27: 104-119
        • Samuel B.S.
        • Shaito A.
        • Motoike T.
        • et al.
        Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41.
        Proc Nat Acad Sci U S A. 2008; 105: 16767-16772
        • Wen L.
        • Ley R.E.
        • Volchkov P.Y.
        • et al.
        Innate immunity and intestinal microbiota in the development of Type 1 diabetes.
        Nature. 2008; 455: 1109-1113
        • Arumugam M.
        • Raes J.
        • Pelletier E.
        • et al.
        Enterotypes of the human gut microbiome.
        Nature. 2011; 473: 174-180
        • Lathrop S.K.
        • Bloom S.M.
        • Rao S.M.
        • et al.
        Peripheral education of the immune system by colonic commensal microbiota.
        Nature. 2011; 478: 250-254
        • Furusawa Y.
        • Obata Y.
        • Fukuda S.
        • et al.
        Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells.
        Nature. 2013; 504: 446-450
        • Le Poul E.
        • Loison C.
        • Struyf S.
        • et al.
        Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation.
        J Biol Chem. 2003; 278: 25481-25489
        • Ryu H.
        • Smith K.
        • Camelo S.I.
        • et al.
        Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice.
        J Neurochem. 2005; 93: 1087-1098
        • Cudkowicz M.E.
        • Andres P.L.
        • Macdonald S.A.
        • et al.
        Phase 2 study of sodium phenylbutyrate in ALS.
        Amyotroph Lateral Scler. 2009; 10: 99-106
        • Redler R.L.
        • Dokholyan N.V.
        The complex molecular biology of amyotrophic lateral sclerosis (ALS).
        Progr Mol Biol Transl Sci. 2012; 107: 215-262
        • Gao Z.
        • Yin J.
        • Zhang J.
        • et al.
        Butyrate improves insulin sensitivity and increases energy expenditure in mice.
        Diabetes. 2009; 58: 1509-1517
        • Kolar S.
        • Barhoumi R.
        • Jones C.K.
        • et al.
        Interactive effects of fatty acid and butyrate-induced mitochondrial Ca(2)(+) loading and apoptosis in colonocytes.
        Cancer. 2011; 117: 5294-5303
        • Tang Y.
        • Chen Y.
        • Jiang H.
        • Nie D.
        The role of short-chain fatty acids in orchestrating two types of programmed cell death in colon cancer.
        Autophagy. 2011; 7: 235-237
        • Tang Y.
        • Chen Y.
        • Jiang H.
        • Nie D.
        Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death.
        Cell Death Differ. 2011; 18: 602-618
        • Iannitti T.
        • Beniamino Palmieri B.
        Clinical and experimental applications of sodium phenylbutyrate.
        Drug R D. 2011; 11: 227-249
        • Zhang R.
        • Miller R.G.
        • Gascon R.
        • et al.
        Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS).
        J Neuroimmunol. 2009; 206: 121-124
        • Forshew D.A.
        • Bromberg M.B.
        A survey of clinicians׳ practice in the symptomatic treatment of ALS.
        Amyotroph Lateral Scler Other Motor Neuron Disord. 2003; 4: 258-263
        • Sun J.
        • Zhou J.
        Does the gut drive amyotrophic lateral sclerosis progress?.
        Neurodegener Dis Manag. 2015; 5: 375-378