Advertisement

Beyond Vancomycin: The Tail of the Lipoglycopeptides

      Abstract

      Purpose

      The purpose of this comparative review is to provide clinical information on the semisynthetic lipoglycopeptides (telavancin, oritavancin, and dalbavancin) for the management of gram-positive infections.

      Methods

      A PubMed search was conducted using the following terms: telavancin, dalbavancin, and oritavancin. Clinical trials evaluating pharmacokinetic properties, pharmacodynamic properties, clinical efficacy, and safety profiles were included in the review.

      Findings

      The lipoglycopeptides are approximately 4- to 8-fold more potent than vancomycin against gram-positive organisms, including activity against vancomycin-intermediate or vancomycin-resistant strains of Staphylococcus and Enterococcus species. In addition, oritavancin maintains activity against Enterococcus species harboring vanA operon. Clinical trial data revealed equal efficacy to vancomycin in the management of acute bacterial skin and skin structure infections and, in the case of telavancin, hospital-acquired pneumonia. A benefit of oritavancin and dalbavancin is that a full course of therapy consists of a single- or 2-dose regimen, respectively. These agents are well tolerated with similar adverse event rates to vancomycin. Telavancin requires a thorough assessment before initiation of therapy to minimize the risk of acute kidney injury and teratogenicity.

      Implications

      The lipoglycopeptides enhance the antibiotic gram-positive armamentarium at a time when methicillin-resistant Staphylococcus aureus prevalence and overall resistance is at an all-time high. These agents serve to fill different clinical roles in the management of gram-positive infections. On the basis of the available data, telavancin should be considered a plausible agent for the management of gram-positive organisms when patients do not respond or develop adverse effects to vancomycin. Dalbavancin and oritavancin are new therapeutic options, and their potency and pharmacokinetic properties may provide benefit over existing therapies. Clinical trial data indicate that patients with signs or symptoms of skin and skin structure infections may be successfully treated using 1 or 2 doses of these agents. Eliminating the need for inpatient admission, central catheter placement, and/or daily outpatient parenteral antibiotic therapy is a major advance in treatment of skin and skin structure infections. This strategy may reduce costs associated with resource utilization and iatrogenic morbidity, resulting in overall improvements in care.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Therapeutics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Centers for Disease Control. Antibiotic resistance threats in the United States, 2013. (2013). http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Accessed May 15, 2015.

        • Jevons M.P.
        ‘Celbenin’-resistant staphylococci.
        Br Med J. 1961; 1: 124-125
        • Tsiodras S.
        • Gold H.S.
        • Sakoulas G.
        • et al.
        Linezolid resistance in a clinical isolate of Staphylococcus aureus.
        Lancet. 2001; 358: 207-208
        • Mangili A.
        • Bica I.
        • Snydman D.
        • et al.
        Daptomycin-resistant, methicillin-resistant Staphylococcus aureus bacteremia.
        Clin Infect Dis. 2005; 40: 1058-1060
        • Moellering R.C.
        MRSA: the first half century.
        J Antimicrob Chemother. 2012; 67: 4-11
        • Lodise T.P.
        • McKinnon P.S.
        Burden of methicillin-resistant Staphylococcus aureus: Focus on clinical and economic outcomes.
        Pharmacother J Hum Pharmacol Drug Ther. 2007; 27: 1001-1012
        • Klein E.
        • Smith D.L.
        • Laxminarayan R.
        Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005.
        Emerg Infect Dis. 2007; 13: 1840-1846
        • Dantes R.
        • Mu Y.
        • Belflower R.
        • et al.
        National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011.
        JAMA Intern Med. 2013; 173: 1970-1978
        • Sievert D.M.
        • Ricks P.
        • Edwards J.R.
        • et al.
        Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the national healthcare safety network at the Centers for Disease Control and Prevention, 2009–2010.
        Infect Control Hosp Epidemiol. 2013; 34: 1-14
        • Ray G.T.
        • Suaya J.A.
        • Baxter R.
        Incidence, microbiology, and patient characteristics of skin and soft-tissue infections in a US population: a retrospective population-based study.
        BMC Infect Dis. 2013; 13: 252
        • Stryjewski M.E.
        • Graham D.R.
        • Wilson S.E.
        • et al.
        Telavancin versus vancomycin for the treatment of complicated skin and skin‐structure infections caused by gram‐positive organisms.
        Clin Infect Dis. 2008; 46: 1683-1693
        • Boucher H.W.
        • Wilcox M.
        • Talbot G.H.
        • et al.
        Once-weekly dalbavancin versus daily conventional therapy for skin infection.
        N Engl J Med. 2014; 370: 2169-2179
        • Corey G.R.
        • Good S.
        • Jiang H.
        • et al.
        Single-dose oritavancin versus 7–10 days of vancomycin in the treatment of gram-positive acute bacterial skin and skin structure infections: The SOLO II noninferiority study.
        Clin Infect Dis. 2015; 60: 254-262
        • Liu C.
        • Bayer A.
        • Cosgrove S.E.
        • et al.
        Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children.
        Clin Infect Dis. 2011; 52: e18-e55
        • Rybak M.
        • Lomaestro B.
        • Rotschafer J.C.
        • et al.
        Therapeutic monitoring of vancomycin in adult patients: A consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists.
        Am J Health Syst Pharm. 2009; 66: 82-98
        • Kullar R.
        • Davis S.L.
        • Levine D.P.
        • et al.
        Validation of the effectiveness of a vancomycin nomogram in achieving target trough concentrations of 15–20 mg/L suggested by the vancomycin consensus guidelines.
        Pharmacother J Hum Pharmacol Drug Ther. 2011; 31: 441-448
        • Sakoulas G.
        • Moise-Broder P.A.
        • Schentag J.
        • et al.
        Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia.
        J Clin Microbiol. 2004; 42: 2398-2402
        • Hidayat L.K.
        • Hsu D.I.
        • Quist R.
        • et al.
        High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity.
        Arch Intern Med. 2006; 166: 2138-2144
        • Holmes N.
        • Tong S.
        • Davis J.
        • et al.
        Treatment of methicillin-resistant Staphylococcus aureus: Vancomycin and beyond.
        Semin Respir Crit Care Med. 2015; 36: 17-30
        • Butler M.S.
        • Hansford K.A.
        • Blaskovich M.A.
        • et al.
        Glycopeptide antibiotics: Back to the future.
        J Antibiot (Tokyo). 2014; 67: 631-644
        • Lodise T.P.
        • Patel N.
        • Lomaestro B.M.
        • et al.
        Relationship between initial vancomycin concentration‐time profile and nephrotoxicity among hospitalized patients.
        Clin Infect Dis. 2009; 49: 507-514
        • Van Hal S.J.
        • Paterson D.L.
        • Lodise T.P.
        Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter.
        Antimicrob Agents Chemother. 2013; 57: 734-744
        • Zhanel G.G.
        • Calic D.
        • Zelenitsky S.
        • et al.
        New lipoglycopeptides A comparative review of dalbavancin, oritavancin and telavancin.
        Drugs. 2010; 70: 859-886
        • Leadbetter M.R.
        • Adams S.M.
        • Bazzini B.
        • et al.
        Hydrophobic vancomycin derivatives with improved ADME properties: discovery of telavancin (TD-6424).
        J Antibiot (Tokyo). 2004; 57: 326-336
        • Saravolatz L.D.
        • Stein G.E.
        • Johnson L.B.
        Telavancin: a novel lipoglycopeptide.
        Clin Infect Dis. 2009; 49: 1908-1914
        • Billeter M.
        • Zervos M.J.
        • Chen A.Y.
        • et al.
        Dalbavancin: a novel once-weekly lipoglycopeptide antibiotic.
        Clin Infect Dis. 2008; 46: 577-583
        • Malabarba A.
        • Goldstein B.P.
        Origin, structure, and activity in vitro and in vivo of dalbavancin.
        J Antimicrob Chemother. 2005; 55: ii15-ii20
        • Zhanel G.G.
        • Schweizer F.
        • Karlowsky J.A.
        Oritavancin: mechanism of action.
        Clin Infect Dis. 2012; 54: S214-S219
        • Allen N.E.
        • Nicas T.I.
        Mechanism of action of oritavancin and related glycopeptide antibiotics.
        FEMS Microbiol Rev. 2003; 26: 511-532
        • Kim S.J.
        • Cegelski L.
        • Steuber D.
        • et al.
        Oritavancin exhibits dual mode of action to inhibit cell-wall biosynthesis in Staphylococcus aureus.
        J Mol Biol. 2008; 377: 281-293
        • Leonard S.N.
        • Rybak M.J.
        Telavancin: an antimicrobial with a multifunctional mechanism of action for the treatment of serious gram-positive infections.
        Pharmacother J Hum Pharmacol. Drug Ther. 2008; 28: 458-468
        • Mendes R.E.
        • Farrel D.J.
        • Sader H.S.
        • et al.
        Oritavancin microbiologic features and activity results from the surveillance program in the United States.
        Clin Infect Dis. 2012; 54: S203-S213
        • Vidaillac C.
        • Parra-Ruiz J.
        • Rybak M.J.
        In vitro time–kill analysis of oritavancin against clinical isolates of methicillin-resistant Staphylococcus aureus with reduced susceptibility to daptomycin.
        Diagn Microbiol Infect Dis. 2011; 71: 470-473
        • Mendes R.E.
        • Farrel D.J.
        • Sader H.S.
        • et al.
        Update of the telavancin activity in vitro tested against a worldwide collection of gram-positive clinical isolates (2013), when applying the revised susceptibility testing method.
        Diagn Microbiol Infect Dis. 2015; 81: 275-279
      2. Nichol KA, Adam HJ, Laing N, et al. Activity of telavancin against gram-positive cocci from CANWARD 2007-2013 using previously established and revised CLSI guidelines [C-826]. Poster session presented at: 54th Annual meeting of the Interscience Conference of Antimicrobial Agents and Chemotherapy; September 5–9, 2014; Washington DC.

        • Goldstein E.J.
        • Citron D.M.
        • Merriam C.V.
        • et al.
        In vitro activities of the new semisynthetic glycopeptide telavancin (TD-6424), vancomycin, daptomycin, linezolid, and four comparator agents against anaerobic gram-positive species and Corynebacterium spp.
        Antimicrob Agents Chemother. 2004; 48: 2149-2152
        • Citron D.M.
        • Kwok Y.Y.
        • Appleman M.D.
        In vitro activity of oritavancin (LY333328), vancomycin, clindamycin, and metronidazole against Clostridium perfringens, Propionibacterium acnes, and anaerobic gram-positive cocci.
        Anaerobe. 2005; 11: 93-95
      3. Smart JI, Corey GR, Shorr AF, et al. Phase 3 clinical isolates with reduced susceptibility to vancomycin remain susceptible to telavancin. Poster session presented at: 54th Annual Meeting of the Interscience Conference on Antimicrobial Agents and Chemotherapy. September, 2014; Washington DC.

        • Citron D.M.
        • Tyrrell K.L.
        • Goldstein E.J.
        Comparative in vitro activities of dalbavancin and seven comparator agents against 41 staphylococcus species cultured from osteomyelitis infections and 18 VISA and hVISA strains.
        Diagn Microbiol Infect Dis. 2014; 79: 438-440
        • Goldstein E.J.
        • Citron D.M.
        • Merriam C.V.
        • et al.
        In vitro activities of dalbavancin and nine comparator agents against anaerobic gram-positive species and corynebacteria.
        Antimicrob Agents Chemother. 2003; 47: 1968-1971
        • Jones R.N.
        • Sader H.S.
        • Flamm R.K.
        • et al.
        Update of dalbavancin spectrum and potency in the USA: report from the SENTRY Antimicrobial Surveillance Program (2011).
        Diagn Microbiol Infect Dis. 2013; 75: 304-307
      4. Mendes RE, Sader HD, Streit JM, et al. In vitro activity of dalbavancin when tested against Streptococcus pneumoniae responsible for documented infections in medical centres in five continents worldwide (2011-2013). Poster presented at: The 25th European Congress of Clinical Microbiology and Infectious Diseases Copenhagen, Denmark; 2015

        • Arhin F.F.
        • Sarmiento I.
        • Belley A.
        • et al.
        Effect of polysorbate 80 on oritavancin binding to plastic surfaces: Implications for susceptibility testing.
        Antimicrob Agents Chemother. 2008; 52: 1597-1603
      5. Vibativ [package insert].
        Theravance Biopharma Antiobiotics, Inc, San Francisco, CA2014
        • Mendes R.E.
        • Farrell D.J.
        • Sader H.S.
        • et al.
        Baseline activity of telavancin against gram-positive clinical isolates responsible for documented infections in U.S. hospitals (2011-2012) as determined by the revised susceptibility testing method.
        Antimicrob Agents Chemother. 2015; 59: 702-706
        • Arias C.A.
        • Mendes R.E.
        • Stilwell M.G.
        • et al.
        Unmet needs and prospects for oritavancin in the management of vancomycin-resistant enterococcal infections.
        Clin Infect Dis. 2012; 54: S233-S238
        • Mendes R.E.
        • Woosley L.N.
        • Farrell D.J.
        • et al.
        Oritavancin activity against vancomycin-susceptible and vancomycin-resistant enterococci with molecularly characterized glycopeptide resistance genes recovered from bacteremic patients, 2009–2010.
        Antimicrob Agents Chemother. 2012; 56: 1639-1642
        • Courvalin P.
        Vancomycin resistance in gram-positive cocci.
        Clin Infect Dis. 2006; 42: S25-S34
        • Gardete S.
        • Tomasz A.
        Mechanisms of vancomycin resistance in Staphylococcus aureus.
        J Clin Invest. 2014; 124: 2836-2840
      6. Sahm DF, Benton BM, Jones ME, et al. Telavancin demonstrates a low potential for in vitro selection of resistance among key target gram-positive species [C1-0681]. Poster session presented at: 46th Annual meeting of the Interscience Conference of Antimicrobial Agents and Chemotherapy. September 27–30, 2006; San Francisco, CA.

        • Kosowska-Shick K.
        • Clark C.
        • Pankuch G.A.
        • et al.
        Activity of telavancin against staphylococci and enterococci determined by MIC and resistance selection studies.
        Antimicrob Agents Chemother. 2009; 53: 4217-4224
        • Goldstein B.P.
        • Draghi D.C.
        • Sheehan D.J.
        • et al.
        Bactericidal activity and resistance development profiling of dalbavancin.
        Antimicrob Agents Chemother. 2007; 51: 1150-1154
      7. FDA. FDA Briefing Document for NDA 206334: Oritavancin diphosphate. Microbiology and Virology review. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/206334Orig1s000MicroR.pdf. accessed May 31, 2015

        • Jones R.N.
        • Farrell D.J.
        • Flamm R.K.
        • et al.
        Surrogate analysis of vancomycin to predict susceptible categorization of dalbavancin.
        Diagn Microbiol Infect Dis. 2015; 82: 73-77
        • Jones R.N.
        • Turndige J.D.
        • Moeck G.
        • et al.
        Use of in vitro vancomycin testing results to predict susceptibility to oritavancin, a new long-acting lipoglycopeptide.
        Antimicrob Agents Chemother. 2015; 59: 2405-2409
        • Mendes R.E.
        • Farrell D.J.
        • Flamm R.K.
        • et al.
        Analysis of vancomycin susceptibility testing results for presumptive categorization of telavancin.
        J Clin Microbiol. 2015; 53: 2727-2730
        • Shaw J.P.
        • Seroogy J.
        • Kaniga K.
        • et al.
        Pharmacokinetics, serum inhibitory and bactericidal activity, and safety of telavancin in healthy subjects.
        Antimicrob Agents Chemother. 2005; 49: 195-201
        • Wong S.L.
        • Barriere S.L.
        • Kitt M.M.
        • et al.
        Multiple-dose pharmacokinetics of intravenous telavancin in healthy male and female subjects.
        J Antimicrob Chemother. 2008; 62: 780-783
        • Lodise T.P.
        • Butterfield J.M.
        • Hedge S.S.
        • et al.
        Telavancin pharmacokinetics and pharmacodynamics in patients with complicated skin and skin structure infections and various degrees of renal function.
        Antimicrob Agents Chemother. 2012; 56: 2062-2066
        • Rubino C.M.
        • Bhavnani S.M.
        • Moeck G.
        • et al.
        Population pharmacokinetic analysis for a single 1,200-milligram dose of oritavancin using data from two pivotal phase 3 clinical trials.
        Antimicrob Agents Chemother. 2015; 59: 3365-3372
        • Samara E.
        • Shaw J.P.
        • Barriere S.L.
        • et al.
        Population pharmacokinetics of telavancin in healthy subjects and patients with infections.
        Antimicrob Agents Chemother. 2012; 56: 2067-2073
      8. Duchin K, Shaw J, Seroogy J, et al. Effect of haemodialysis on single dose pharmacokinetics of telavancin [abstract p1028]. Poster session presented at: 14th Annual Meeting of the European Congress of Clinical Microbiology and Infectious Disease. 2005; Copenhagen, Denmark.

        • Patel J.H.
        • Churchwell M.D.
        • Seroogy J.D.
        • et al.
        Telavancin and hydroxy propyl-β-cyclodextrin clearance during continuous renal replacement therapy: An in vitro study.
        Int J Artif Organs. 2009; 32: 745-751
        • Goldberg M.R.
        • Wong S.L.
        • Shaw J.P.
        • et al.
        Lack of effect of moderate hepatic impairment on the pharmacokinetics of telavancin.
        Pharmacother J Hum Pharmacol Drug Ther. 2010; 30: 35-42
        • Sun H.K.
        • Duchin K.
        • Nightingale C.H.
        • et al.
        Tissue penetration of telavancin after intravenous administration in healthy subjects.
        Antimicrob Agents Chemother. 2006; 50: 788-790
        • Gotfried M.H.
        • Shaw J.P.
        • Benton B.M.
        • et al.
        Intrapulmonary distribution of intravenous telavancin in healthy subjects and effect of pulmonary surfactant on in vitro activities of telavancin and other antibiotics.
        Antimicrob Agents Chemother. 2008; 52: 92-97
        • Saravolatz L.D.
        • Stein G.E.
        Oritavancin: A long-half-life lipoglycopeptide.
        Clin Infect Dis. 2015; 61: 627-632
        • Kumar A.
        • Mann H.J.
        • Keshtgarpour M.
        • et al.
        In vitro characterization of oritavancin clearance from human blood by low-flux, high-flux, and continuous renal replacement therapy dialyzers.
        Int J Artif Organs. 2011; 34: 1067-1074
        • Baquir B.
        • Lemaire S.
        • Van Bambeke F.
        • et al.
        Macrophage killing of bacterial and fungal pathogens is not inhibited by intense intracellular accumulation of the lipoglycopeptide antibiotic oritavancin.
        Clin Infect Dis. 2012; 54: S229-S232
        • Fetterly G.J.
        • Ong C.M.
        • Bhavnani S.M.
        • et al.
        Pharmacokinetics of oritavancin in plasma and skin blister fluid following administration of a 200-milligram dose for 3 days or a single 800-milligram dose.
        Antimicrob Agents Chemother. 2005; 49: 148-152
        • Cabellos C.
        • Fernandez A.
        • Maiques J.M.
        • et al.
        Experimental study of LY333328 (oritavancin), alone and in combination, in therapy of cephalosporin-resistant pneumococcal meningitis.
        Antimicrob Agents Chemother. 2003; 47: 1907-1911
        • Ambrose P.G.
        • Drusano G.L.
        • Craig W.A.
        In vivo activity of oritavancin in animal infection models and rationale for a new dosing regimen in humans.
        Clin Infect Dis. 2012; 54: S220-S228
        • Dunbar L.M.
        • Milata J.
        • McClure T.
        • et al.
        Comparison of the efficacy and safety of oritavancin front-loaded dosing regimens to daily dosing: an analysis of the SIMPLIFI trial.
        Antimicrob Agents Chemother. 2011; 55: 3476-3484
        • Buckwalter M.
        • Dowell J.A.
        Population pharmacokinetic analysis of dalbavancin, a novel lipoglycopeptide.
        J Clin Pharmacol. 2005; 45: 1279-1287
        • Marbury T.
        • Dowell J.A.
        • Seltzer E.
        • et al.
        Pharmacokinetics of dalbavancin in patients with renal or hepatic impairment.
        J Clin Pharmacol. 2009; 49: 465-476
        • Solon E.G.
        • Dowell J.A.
        • Lee J.
        • et al.
        Distribution of radioactivity in bone and related structures following administration of [14C]dalbavancin to New Zealand white rabbits.
        Antimicrob Agents Chemother. 2007; 51: 3008-3010
      9. Cavaleri M, Riva S, Valagussa A, et al. Pharmacokinetics and excretion of dalbavancin in the rat. J Antimicrob Chemother. 2005;55:ii31–ii35.

        • Dunne M.W.
        • Puttagunta S.
        • Sprenger C.R.
        • et al.
        Extended-duration dosing and distribution of dalbavancin into bone and articular tissue.
        Antimicrob Agents Chemother. 2015; 59: 1849-1855
        • Andes D.
        • Craig W.A.
        In vivo pharmacodynamic activity of the glycopeptide dalbavancin.
        Antimicrob Agents Chemother. 2007; 51: 1633-1642
      10. FDA. FDA Briefing Document, NDA 021833. Advisory committee meeting: March 31, 2014. http://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/Anti-InfectiveDrugsAdvisoryCommittee/ucm390788.htm; accessed May 31, 2015.

        • Polyzos K.A.
        • Mavros M.N.
        • Vardaka K.Z.
        • et al.
        Efficacy and safety of telavancin in clinical trials: A systematic review and meta-analysis.
        PLoS ONE. 2012; 7: e41870
        • Corey G.R.
        • Stryjewski M.E.
        New rules for clinical trials of patients with acute bacterial skin and skin-structure infections: Do not let the perfect be the enemy of the good.
        Clin Infect Dis. 2011; 52: S469-S476
        • Rubinstein E.
        • Lalani T.
        • Corey G.R.
        • et al.
        Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens.
        Clin Infect Dis. 2011; 52: 31-40
        • Corey R.G.
        • Kollef M.H.
        • Rubinstein E.
        • et al.
        Telavancin for hospital-acquired pneumonia: clinical response and 28-day survival.
        Antimicrob Agents Chemother. 2014; 58: 2030-2037
        • Lacy M.K.
        • Stryjewski M.E.
        • Wang W.
        • et al.
        Telavancin hospital-acquired pneumonia trials: Impact of gram-negative infections and inadequate gram-negative coverage on clinical efficacy and all-cause mortality.
        Clin Infect Dis. 2015; 61: S87-S93
        • Styjewski M.E.
        • Lentnek A.
        • O’Riordan W.
        • et al.
        A randomized phase 2 trial of telavancin versus standard therapy in patients with uncomplicated Staphylococcus aureus bacteremia: The ASSURE study.
        BMC Infect Dis. 2014; 14: 289
        • Corey G.R.
        • Kabler H.
        • Mehra P.
        • et al.
        Single-dose oritavancin in the treatment of acute bacterial skin infections.
        N Engl J Med. 2014; 370: 2180-2190
      11. De la Pena A, Chien J, Geiser J, et al. Microbiological outcomes and pharmacokinetics of oritavancin in patients with Gram-positive bacteremia. Poster presented at: The 12th European Congress of Clinical Microbiology and Infectious Diseases. Milan, Italy; 2002

      12. Loutit J, O'Riordan W, San Juan J, et al. Phase 2 trial comparing four regimens of oritavancin vs. comparator in the treatment of patients with S. aureus bacteremia. Poster presented at: The 14th European Congress of Clinical Microbiology and Infectious Diseases. Prague/Czech Republic; 2004

        • Crandon J.
        • Nicolau D.P.
        Oritavancin: a potential weapon in the battle against serious gram-positive pathogens.
        Future Microbiol. 2008; 3: 251-260
        • Seltzer E.
        • Dorr M.B.
        • Goldstein B.P.
        • et al.
        Once-weekly dalbavancin versus standard-of-care antimicrobial regimens for treatment of skin and soft-tissue infections.
        Clin Infect Dis. 2003; 37: 1298-1303
      13. Dunne MW, Puttagunta S, Giordano P, et al. Single dose treatment with dalbavancin for acute bacterial skin and skin structure infection. Poster presented at: Infectious Diseases Week (IDWeek); San Diego, CA; 2015

        • Raad I.
        • Darouiche R.
        • Vazquez J.
        • et al.
        Efficacy and safety of weekly dalbavancin therapy for catheter-related bloodstream infection caused by gram-positive pathogens.
        Clin Infect Dis. 2005; 40: 374-380
      14. Orbactiv [package insert].
        The Medicines Company, Parsippany, NJ2014
        • Kumar A.
        • Mann H.J.
        Visual compatibility of oritavancin diphosphate with selected coadministered drugs during simulated Y-site administration.
        Am J Health Syst Pharm. 2010; 67: 1640-1644
      15. Dunne MW, Das AF, Puttagunat S. An analysis of the safety profile of dalbavancin from the phase 2/3 clinical program [1334]. Poster presented at: Infectious Diseases Week; San Francisco, CA; 2013

      16. Dalvance [package insert].
        Durata Therapeutics US Limited, Chicago, IL2014
        • Jauregui L.E.
        • Babazadeh S.
        • Seltzer E.
        • et al.
        Randomized, double-blind comparison of once-weekly dalbavancin versus twice-daily linezolid therapy for the treatment of complicated skin and skin structure infections.
        Clin Infect Dis. 2005; 41: 1407-1415