Advertisement

Vemurafenib in Patients With BRAF V600E Mutation–Positive Advanced Melanoma

      Abstract

      Background

      Vemurafenib is an oral, small-molecule kinase inhibitor that selectively targets activated BRAF V600E and has been approved for the treatment of advanced BRAF mutation–positive melanoma.

      Objective

      This article reviews the clinical pharmacology, efficacy, tolerability, and pharmacokinetics of vemurafenib and in addition outlines proposed mechanisms of vemurafenib resistance.

      Methods

      A literature search of MEDLINE and ScienceVerse Scopus was performed using the key words malignant melanoma, BRAF, vemurafenib, and PLX4032. Scientific abstracts, US Food and Drug Administration Web site data (www.accessdata.fda.gov), the manufacturer-submitted approval data from ClinicalTrials.gov (www.clinicaltrials.gov), and the references from applicable publications were also consulted.

      Results

      Clinical studies have reported that vemurafenib is efficacious and acceptably well-tolerated. In a Phase I study (BRIM-1), a 960-mg BID dose achieved an objective response rate of 81% among 32 patients with melanoma who carried a BRAF V600E mutation. Of the 26 responders, 2 achieved a complete response and 24 a partial response. In BRIM-2, 132 BRAF V600E–positive patients achieved an overall response rate of 53% (95% CI, 44%–62%); 6% achieved a complete response and 47%, a partial response. Response was noted at 6 weeks and lasted a median of 6.7 months (95% CI, 5.6–8.6). Median survival was 15.9 months (95% CI, 11.6–18.3); 77% of patients survived to 6 months (95% CI, 70–85) and 58% to 12 months (95% CI, 11.6–18.3), and an estimated 43% were expected to survive to 18 months (95% CI, 33–53). The Phase III study (BRIM-3) compared vemurafenib to dacarbazine. The hazard ratio (HR) for death with vemurafenib was 0.37 (95% CI, 0.26–0.55; P < 0.001). At 6 months, overall survival was 84% (95% CI, 78–89) versus 64% (95% CI, 56–73) in the vemurafenib and dacarbazine treatment arms, respectively. The HR for tumor progression in the vemurafenib cohort was 0.26 (95% CI, 0.20–0.33; P < 0.001), and the estimated median progression-free survival was 5.3 months with vemurafenib versus 1.6 months with dacarbazine. Finally, the difference in response rates was significant (48% vs 5%, respectively; P < 0.001). The most common adverse events reported have been arthralgia, rash, photosensitivity, fatigue, pruritus, alopecia, cutaneous squamous cell carcinoma, diarrhea, and mild to moderate nausea.

      Conclusions

      Vemurafenib is effective for advanced melanomas expressing the BRAF V600E mutations. Resistance to BRAF inhibition can be problematic, but new evidence suggests that combination therapy may attenuate the issue. Targeting the cellular activity of melanoma cells is reported to be efficacious and is expected to delay progression and prolong survival.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Therapeutics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. National Cancer Institute Surveillance, Epidemiology And End Results (SEER) Program.
        (Accessed March 13, 2012)
        • American Society of Clinical Oncology Melanoma
        (Accessed March 1, 2012)
        • American Cancer Society Melanoma Skin Cancer
        (Accessed March 10, 2012)
        • Jemal A.
        • Siegel R.
        • Xu J.
        • Ward E.
        Cancer statistics, 2010.
        CA: A Cancer Journal for Clinicians. 2010; 60: 277-300
        • Boyle G.M.
        Therapy for metastatic melanoma: An overview and update.
        Exp Rev Anticancer Ther. 2011; 11: 725-737
      2. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology, Melanoma version 3.2012.
        (Accessed February 7, 2012)
        • Eggermont A.M.
        Advances in systemic treatment of melanoma.
        Ann Oncol. 2010; 21: vii339-vii344
        • Livingstone E.
        • Zimmer L.
        • Piel S.
        • Schadendorf D.
        PLX4032: Does it keep its promise for metastatic melanoma treatment?.
        Exp Opin Investig Drugs. 2010; 19: 1439-1449
        • Puzanov I.
        • Flaherty K.T.
        Targeted molecular therapy in melanoma.
        Semin Cutan Med Surg. 2010; 29: 196-201
        • Chapman P.B.
        • Einhorn L.H.
        • Meyers M.L.
        • et al.
        Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma.
        J Clin Oncol. 1999; 17: 2745-2751
        • Yang A.S.
        • Chapman P.B.
        The history and future of chemotherapy for melanoma.
        Hematol Oncol Clin North Am. 2009; 23: 583-597
        • Atkins M.B.
        • Hsu J.
        • Lee S.
        • et al.
        Phase III trial comparing concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin-2, and interferon alfa-2b with cisplatin, vinblastine, and dacarbazine alone in patients with metastatic malignant melanoma (E3695): a trial coordinated by the eastern cooperative oncology group.
        J Clin Oncol. 2008; 26: 5748-5754
        • Atkins M.B.
        • Lotze M.T.
        • Dutcher J.P.
        • et al.
        High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993.
        J Clin Oncol. 1999; 17: 2105-2116
        • McDermott D.F.
        • Atkins M.B.
        More support for the judicious use of high-dose interleukin-2 in patients with advanced melanoma.
        J Clin Oncol. 2007; 25: 3791-3793
        • Hodi F.S.
        • O'Day S.J.
        • McDermott D.F.
        • et al.
        Improved survival with ipilimumab in patients with metastatic melanoma.
        N Engl J Med. 2010; 363: 711-723
        • Robert C.
        • Thomas L.
        • Bondarenko I.
        • et al.
        Ipilimumab plus dacarbazine for previously untreated metastatic melanoma.
        N Engl J Med. 2011; 364: 2517-2526
        • Fisher R.
        • Cahalin P.
        • Gore M.
        • Larkin J.
        A tale of two tumours and a plea for progress.
        Lancet Oncol. 2012; 13: 124-125
        • Sondak V.K.
        • Smalley K.S.
        • Kudchadkar R.
        • et al.
        Ipilimumab.
        Nat Rev Drug Discov. 2011; 10: 411-412
        • Davies H.
        • Bignell G.R.
        • Cox C.
        • et al.
        Mutations of the BRAF gene in human cancer.
        Nature. 2002; 417: 949-954
        • Curtin J.A.
        • Fridlyand J.
        • Kageshita T.
        • et al.
        Distinct sets of genetic alterations in melanoma.
        N Engl J Med. 2005; 353: 2135-2147
        • Gartside M.G.
        • Chen H.
        • Ibrahimi O.A.
        • et al.
        Loss-of-function fibroblast growth factor receptor-2 mutations in melanoma.
        Mol Cancer Res. 2009; 7: 41-54
        • Curtin J.A.
        • Busam K.
        • Pinkel D.
        • Bastian B.C.
        Somatic activation of KIT in distinct subtypes of melanoma.
        J Clin Oncol. 2006; 24: 4340-4346
        • Flaherty K.T.
        BRAF inhibitors and melanoma.
        Cancer J. 2011; 17: 505-511
        • Bollag G.
        • Hirth P.
        • Tsai J.
        • et al.
        Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma.
        Nature. 2010; 467: 596-599
        • Ribas A.
        • Flaherty K.T.
        BRAF targeted therapy changes the treatment paradigm in melanoma.
        Nat Rev Clin Oncol. 2011; 8: 426-433
      3. FDA approves vemurafenib for treatment of metastatic melanoma.
        Oncology (Huntington, NY). 2011; 25: 906
      4. Zelboraf (vemurafenib).
        ([package insert]) (Accessed February 21, 2012)
      5. Vemurafenib (zelboraf) for metastatic melanoma.
        Med Lett Drugs Ther. 2011; 53: 77-78
        • Flaherty K.T.
        • Puzanov I.
        • Kim K.B.
        • et al.
        Inhibition of mutated, activated BRAF in metastatic melanoma.
        N Engl J Med. 2010; 363: 809-819
        • Sosman J.A.
        • Kim K.B.
        • Schuchter L.
        • et al.
        Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib.
        N Engl J Med. 2012; 366: 707-714
        • Sosman J.A.
        BRAF inhibitor gives striking survival advantage in BRIM-3: commentary.
        Oncol Rep. 2011; 29
        • Chapman P.B.
        • Hauschild A.
        • Robert C.
        • et al.
        Improved survival with vemurafenib in melanoma with BRAF V600E mutation.
        N Engl J Med. 2011; 364: 2507-2516
        • Joseph E.W.
        • Pratilas C.A.
        • Poulikakos P.I.
        • et al.
        The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner.
        Proc Natl Acad Sci U S A. 2010; 107: 14903-14908
        • Lee J.T.
        • Li L.
        • Brafford P.A.
        • et al.
        PLX4032, a potent inhibitor of the B-raf V600E oncogene, selectively inhibits V600E-positive melanomas.
        Pigment Cell Melanoma Res. 2010; 23: 820-827
        • Halaban R.
        • Zhang W.
        • Bacchiocchi A.
        • et al.
        PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells.
        Pigment Cell Melanoma Res. 2010; 23: 190-200
        • FDA Center for Drug Evaluation and Research summary application review
        (Accessed March 1, 2012)
        • FDA Center for Drug Evaluation and Research chemistry review
        (Accessed March 1, 2012)
        • FDA Center for Drug Evaluation and Research, clinical pharmacology and biopharmaceutics review(s)
        (Accessed March 1, 2012)
        • White R.M.
        The natural history of malignancies under conditions of BRAF inhibitor stimulation.
        Expert Opin Investig Drugs. 2011; 20: 135-136
        • Nazarian R.
        • Shi H.
        • Wang Q.
        • et al.
        Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation.
        Nature. 2010; 468: 973-977
        • Su F.
        • Bradley W.D.
        • Wang Q.
        • et al.
        Resistance to selective BRAF inhibition can be mediated by modest upstream pathway activation.
        Cancer Res. 2012; 72: 969-978
        • Wellbrock C.
        • Hurlstone A.
        BRAF as therapeutic target in melanoma.
        Biochem Pharmacol. 2010; 80: 561-567
        • Tsao H.
        • Goel V.
        • Wu H.
        • et al.
        Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma.
        J Invest Dermatol. 2004; 122: 337-341
        • Albino A.P.
        • Fountain J.W.
        Molecular genetics of human malignant melanoma.
        Cancer Treat Res. 1993; 65: 201-255
        • Sosman J.A.
        • Margolin K.A.
        Inside life of melanoma cell signaling, molecular insights, and therapeutic targets.
        Curr Oncol Rep. 2009; 11: 405-411
        • Satyamoorthy K.
        • Li G.
        • Gerrero M.R.
        • et al.
        Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation.
        Cancer Res. 2003; 63: 756-759
        • Solit D.
        • Rosen N.
        Oncogenic RAF: A brief history of time.
        Pigment Cell Melanoma Res. 2010; 23: 760-762
        • Lee J.T.
        • Herlyn M.
        MEK'ing the most of p53 reactivation therapy in melanoma.
        J Invest Dermatol. 2012; 132: 263-265
        • Guldberg P.
        • thor Straten P.
        • Birck A.
        • et al.
        Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma.
        Cancer Res. 1997; 57: 3660-3663
        • Birck A.
        • Ahrenkiel V.
        • Zeuthen J.
        • et al.
        Mutation and allelic loss of the PTEN/MMAC1 gene in primary and metastatic melanoma biopsies.
        J Invest Dermatol. 2000; 114: 277-280
        • Flaherty K.T.
        • Yasothan U.
        • Kirkpatrick P.
        Vemurafenib.
        Nat Rev Drug Discov. 2011; 10: 811-812
        • Heakal Y.
        • Kester M.
        • Savage S.
        Vemurafenib (PLX4032): An orally available inhibitor of mutated BRAF for the treatment of metastatic melanoma.
        Ann Pharmacother. 2011; 45: 1399-1405
      6. FDA Medical Device Approval Cobas 4800 BRAF V600 Mutation Test.
        (Accessed March 1, 2012)
        • Ribas A.
        • Kim K.B.
        • Schuchter L.M.
        • et al.
        BRIM-2: An open-label, multicenter phase II study of vemurafenib in previously treated patients with BRAF V600E mutation-positive metastatic melanoma.
        J Clin Oncol. 2011; 29 (Abstract 8509)
      7. Clinical trials, BRIM-3 results.
        (Accessed March 5, 2012)
        • Dummer R.
        • Rinderknecht J.
        • Goldinger S.M.
        Ultraviolet A and photosensitivity during vemurafenib therapy.
        N Engl J Med. 2012; 366: 480-481
        • Lemech C.
        • Arkenau H.
        Novel treatments for metastatic cutaneous melanoma and the management of emergent toxicities.
        Clin Med Insights: Oncology. 2012; 6: 53-66
        • Oberholzer P.A.
        • Kee D.
        • Dziunycz P.
        • et al.
        RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors.
        J Clin Oncol. 2012; 30: 316-321
        • Su F.
        • Viros A.
        • Milagre C.
        • et al.
        RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors.
        N Engl J Med. 2012; 366: 207-215
        • Lacouture M.E.
        • O'Reilly K.
        • Rosen N.
        • Solit D.B.
        Induction of cutaneous squamous cell carcinomas by RAF inhibitors: Cause for concern?.
        J Clin Oncol. 2012; 30: 329-330
        • Koneru M.
        • Carvajal R.D.
        A new era for the management of metastatic melanoma.
        Exp Rev Dermatol. 2012; 7: 27-35
        • Harding J.J.
        • Pulitzer M.
        • Chapman P.B.
        Vemurafenib sensitivity skin reaction after ipilimumab.
        N Engl J Med. 2012; 366: 866-868
        • Chapman P.B.
        • Hauschild A.
        • McArthur G.A.
        The authors reply.
        N Engl J Med. 2011; 365: 1450
        • Poulikakos P.I.
        • Persaud Y.
        • Janakiraman M.
        • et al.
        RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E).
        Nature. 2011; 480: 387-390
        • Goydos J.S.
        • Mann B.
        • Kim H.J.
        • et al.
        Detection of B-RAF and N-RAS mutations in human melanoma.
        J Am Coll Surg. 2005; 200: 362-370
        • Fedorenko I.V.
        • Paraiso K.H.T.
        • Smalley K.S.M.
        Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma.
        Biochem Pharmacol. 2011; 82: 201-209
        • Shi H.
        • Kong X.
        • Ribas A.
        • Lo R.S.
        Combinatorial treatments that overcome PDGFRβ-driven resistance of melanoma cells to V600EB-RAF inhibition.
        Cancer Res. 2011; 71: 5067-5074
        • Solit D.B.
        • Rosen N.
        Resistance to BRAF inhibition in melanomas.
        N Engl J Med. 2011; 364: 772-774
        • Johannessen C.M.
        • Boehm J.S.
        • Kim S.Y.
        • et al.
        COT drives resistance to RAF inhibition through MAP kinase pathway reactivation.
        Nature. 2010; 468: 968-972
        • Paraiso K.H.
        • Xiang Y.
        • Rebecca V.W.
        • et al.
        PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression.
        Cancer Res. 2011; 71: 2750-2760
        • Kaplan F.M.
        • Mastrangelo M.J.
        • Aplin A.E.
        The wrath of RAFs: rogue behavior of B-RAF kinase inhibitors.
        J Invest Dermatol. 2010; 130: 2669-2671
        • Kaplan F.M.
        • Shao Y.
        • Mayberry M.M.
        • Aplin A.E.
        Hyperactivation of MEK-ERK1/2 signaling and resistance to apoptosis induced by the oncogenic B-RAF inhibitor, PLX4720, in mutant N-RAS melanoma cells.
        Oncogene. 2011; 30: 366-371
        • Lo R.S.
        Combinatorial therapies to overcome B-RAF inhibitor resistance in melanomas.
        Pharmacogenomics. 2012; 13: 125-128
        • Greger J.
        • Eastman S.
        • Zhang V.
        • et al.
        Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations.
        Mol Cancer Ther. 2012; 11: 909-920
        • Kudchadkar R.
        • Paraiso K.H.
        • Smalley K.S.
        Targeting mutant BRAF in melanoma: current status and future development of combination therapy strategies.
        Cancer J. 2012; 18: 124-131